XX. NWA 856 (ver. 2003)

Basalt 320 grams

Figure XX-1: Photograph of NWA 856 (Djel Ibone) kindly provided by Bruno Fectay and Carine Bidaut illustrating thin fusion crust and interior basaltic texture (scale is 1 cm).

Introduction

Jambon *et al.* (2001, 2002) describe the discovery in March 2001 of another basaltic shergottite from Morocco. This sample was originally referred to as "Djel Ibone" and is officially known as NWA 856 (Russell *et al.* 2002). The original piece (~ 5 cm) had a thin black fusion fusion crust that was well preserved – see also figure 1 in Jambon *et al.* (2002).

Petrography

This meteorite is a fine-grained basalt (figure XX-1) with gray acicular pyroxene phenocrysts up to 12 mm long (Jambon *et al.* 2002). Augite and pigeonite form as separate crystals. Plagioclase (maskelynite) laths are interstitial as is trace merrillite, apatite, pyrrhotite, chromite, Fe-Ti oxides, silica and baddeleyite.

Shock melt pockets are more abundant than in Shergotty or Zagami and this meteorite is highly fractured at all scales.

Mineralogical Mode

Pyroxene 68 vol. %
Plagioclase 23
Phosphates 1
Oxides 2
Silica 1
Melt Pockets 2

Terrestrial calcite veins cross-cut this meteorite, but terrestrial weathering appears to be at a minimum because Cs, Ba, Sr and U are not elevated (Jambon *et al.* 2002).

Photos can also be seen at http://www.jpl.nasa.gov/snc/nwa856.html

Mineral Chemistry

Pyroxenes: As in the Shergotty meteorite, augite and pigeonite are present in NWA 856 as separate phases, with no pyroxenes of intermediate composition (figure XX-2). Pyroxenes are zoned; pigeonite ranges from $\operatorname{En}_{59}\operatorname{Fs}_{29}\operatorname{Wo}_{12}$ to $\operatorname{En}_{26}\operatorname{Fs}_{59}\operatorname{Wo}_{15}$ and augite from $\operatorname{En}_{36}\operatorname{Fs}_{39}\operatorname{Wo}_{32}$ to $\operatorname{En}_{48}\operatorname{Fs}_{39}\operatorname{Wo}_{13}$.

Figure XX-2: Pyroxene composition diagram for NWA 856 (data replotted from Jambon et al. 2002).

Maskelynite: Plagioclase has been shocked to maskelynite $Ab_{48}Or_{2}An_{50}$.

Phosphates: Both merrillite and Cl-apatite are present.

Stishovite: Relative abundant and large euhedral crystals or thin square needles of stishovite have been observed by Raman spectroscopy (Jambon *et al.* 2002) in melt pockets of NWA 856.

Baddelyite: Two minute baddelyite crystals are reported.

Amphibole: Minute amphibole is reported by Jambon *et al.* (2002) located in melt inclusions in pyroxene cores.

Whole-rock Composition

Table XX-1 gives the composition of NWA 856 as reported by Jambon *et al.* (2001, 2002). The REE pattern of NWA 856 is similar to those of Shergotty and Zagami (figure XX-3). The Ga/Al ratio (4.1 x 10⁻⁴) indicates that this rock is Martian. Weathering does not appear to have left a significant chemical signature in this desert meteorite (Jambon *et al.* 2002).

Other Isotopes

Jambon *et al.* (2002) reported oxygen isotopes with $\Delta^{17}O = \sim 0.47$ ‰.

Figure XX-3: Normalized rare earth element diagram for NWA 856 compared with that of Shergotty (data from Jambon et al. 2002 and Lodders 2000).

Processing

Figure XX-4 shows details of a slab of NWA 856.

Figure XX-4: Close up of slab of Djel Ibone illustrating basaltic texture (whose fingers?).

Table XX-1: Chemical composition of NWA 856.

reference weight	Jambon 2001	Jambon 2002 500 mg.		Jambon 2002	
SiO2 TiO2 Al2O3 FeO MnO CaO MgO Na2O K2O P2O5 sum	0.81 6.83 17.8 0.49 10.2 9.51 1.28 0.13	0.81 6.83 17.81 0.49 10.24 9.51 1.28 0.13	(a) (a) (a) (a) (a) (a) (a)	19.97 0.54	(c) (c)
Li ppm Be F S		4.06 0.355	(b)		
CI Sc V Cr Co Ni Cu Zn Ga Ge	77	55.7 295 3361 36.3 77	(b) (b) (b) (b) (b) (b) (b)	54.1 3942 43 85	(c) (c) (c)
		59.1 14.66		66	(c)
As Se				0.18	(c)
Br Rb Sr Y Zr Nb		6.24 48.7 18.81 62.8 3.37	(b) (b) (b)	2.64 8.2 56	(c) (c) (c)
Pd ppb Ag ppb Sb ppb Cs ppm Ba La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er	2.16 3.88 1.5 0.58	0.43 41.3 2.16 5.49 0.786 3.88 1.5 0.582 2.51 0.474 3.12 0.677 1.87	(b)	< 50 14 0.41 46 2.34 6.1 3.9 1.68 0.62 0.48	(c) (c) (c) (c) (c) (c) (c) (c)
Tm Yb Lu Hf Ta W ppb Au ppb	1.64	1.64 0.251 1.55 0.16 430	(b) (b) (b) (b)	1.76 2.01 0.23 520 4	(c) (c) (c) (c) (c)
Th ppm U ppm	0.4	0.398 0.096	(b)	0.442 0.092	(c)

technique: a) ICP/AES, b) ICP/MS, c) INAA